Rесурсы

полезные ссылки на источники по языку программирования R

Автор

Евгений Матеров

Дата публикации

09.05.2023

“Wenn du eine weise Antwort verlangst, musst du vernünftig fragen.” — Johann Wolfgang von Goethe.

Блоги

Имя адрес
Julia Silge https://juliasilge.com/
Emil Hvitfeldt https://www.emilhvitfeldt.com/
Nathan Yau https://flowingdata.com/
Nadieh Bremer https://www.visualcinnamon.com/
Dr. Dominic Royé https://dominicroye.github.io/en/
Milos Popovic https://milospopovic.net/
Robin Lovelace https://www.robinlovelace.net/
Thomas Mock https://themockup.blog/
Christian A. Gebhard https://jollydata.blog/
Data Stuff https://erdavis.com/
Tyler Morgan-Wall (Rayshader + Rayrender) https://www.tylermw.com/
Isabella Velásquez https://ivelasq.rbind.io/
Taras Kaduk https://taraskaduk.com/
Masumbuko Semba https://semba-blog.netlify.app/post/
Danielle Navarro https://blog.djnavarro.net/index.html#category=R
Data Imaginist https://www.data-imaginist.com/
ONE WORLD (TidyTerra & Maps)

https://dieghernan.github.io/blog/

https://dieghernan.github.io/202210_tidyterra-hillshade/#r_bloggers

Programming with R https://www.programmingwithr.com/post/
Stats and R https://statsandr.com/blog/
Dmitry Shkolnik https://www.dshkol.com/post/
Josh McCrain http://joshuamccrain.com/
June Choe https://yjunechoe.github.io/blog.html
Nicola Rennie https://nrennie.rbind.io/blog/
Restless Data https://restlessdata.com.au/
Alex Cookson https://www.alexcookson.com/
Ander Fernández Jauregui https://anderfernandez.com/en/blog/
Amit Levinson https://amitlevinson.com/#posts
Jason Bryer https://bryer.org/post/
Albert Rapp https://albert-rapp.de/post/
Steven P. Sanderson (Steve On Data) https://www.spsanderson.com/steveondata/
yuzaR-Blog https://yuzar-blog.netlify.app/index.html
Harshvardhan https://www.harsh17.in/blog/
Yuri Vishnevsky https://yuri.is/
Katie Press https://kpress.dev/blog/
Luis D. Verde Arregoitia https://luisdva.github.io/posts/
Pascal Schmidt https://thatdatatho.com/
Mike Mahoney https://www.mm218.dev/blog.html
Josiah Parry https://josiahparry.com/
Andrew Heiss https://www.andrewheiss.com/blog/
Will Chase https://www.williamrchase.com/
Kenneth Wong https://mappyurbanist.com/blog/
Tidy Tales https://tidytales.ca/
Mara Averick https://dataand.me/
Joshua Kunst https://jkunst.com/blog/
R and/or spoRts Meghan Hall https://meghan.rbind.io/blog/
Steven V. Miller http://svmiller.com/blog/
Andreas Handel https://www.andreashandel.com/posts.html
James H Wade https://jameshwade.com/#category=R
Emily Riederer https://emilyriederer.netlify.app/#posts
Louise E. Sinks https://lsinks.github.io/posts.html
Lore Abad https://loreabad6.github.io/
Claudiu’s Blog https://claudiu.psychlab.eu/post/
Matt Kaye https://matthewrkaye.com/posts.html
Jakub Nowosad https://jakubnowosad.com/posts.html
Solomon Kurz https://solomonkurz.netlify.app/blog/
Quantum Jitter https://www.quantumjitter.com/
small tRifles http://www.sapijaszko.net/glupotki/
Building stories with data https://www.cararthompson.com/blog.html
R with White Dwarf https://blog.rwhitedwarf.com/
R and rivers https://ryanpeek.org/
DataGeek https://datageeek.com/
RObservations https://bensstats.wordpress.com/category/robservations/
mlampros https://mlampros.github.io/
r-spatial https://r-spatial.org/
Len Kiefer http://lenkiefer.com/
ouR data generation https://www.rdatagen.net/
RStudio AI Blog https://blogs.rstudio.com/ai/
mlr-org https://mlr-org.com/blog.html
Mastodon rspatial developers and contributors https://github.com/Nowosad/mastodon-rspatial
UProger (Python) https://uproger.com/
Лаборатория данных https://datalaboratory.ru/
Сергей Мастицкий https://r-analytics.blogspot.com/

Книги

Название адрес
Коллекции книг
bookdown https://bookdown.org/
Big Book of R https://www.bigbookofr.com/index.html
Tidyverse & Tidymodels
R for Data Science https://r4ds.had.co.nz/
Tidy Modeling with R https://www.tmwr.org/
Text Mining with R https://www.tidytextmining.com/
Supervised Machine Learning for Text Analysis in R https://smltar.com/
Feature Engineering & Selection https://bookdown.org/max/FES/
Mastering Shiny https://mastering-shiny.org/index.html
Statistical Inference via Data Science: A ModernDive into R and the Tidyverse https://moderndive.com/
Tidy Evaluation https://tidyeval.tidyverse.org/
STAT 545 https://stat545.com/
Modern R with the tidyverse https://b-rodrigues.github.io/modern_R/
Functional Programming https://dcl-prog.stanford.edu/
Data Science. A First Introduction (Tiffany Timbers, Trevor Campbell, and Melissa Lee. Foreword by Roger Peng) https://datasciencebook.ca/
ISLR tidymodels labs https://emilhvitfeldt.github.io/ISLR-tidymodels-labs/
Introduction to Data Analysis with R https://jmbuhr.de/dataintro/
Tidyteam code review principles https://code-review.tidyverse.org/
Геопространственное моделирование
Spatial Data Science with applications in R https://r-spatial.org/book/
Introduction to Spatial Data Programming with R http://132.72.155.230:3838/r/index.html
R for Geographic Data Science https://sdesabbata.github.io/r-for-geographic-data-science/index.html
Geocomputation with R

https://r.geocompx.org/

https://geocompx.org/

Geocomputation with Python

https://py.geocompx.org/

https://geocompx.org/

Introduction to urban accessibility https://ipeagit.github.io/intro_access_book/en/index.en.html
Geospatial Health Data: Modeling and Visualization with R-INLA and Shiny https://www.paulamoraga.com/book-geospatial/index.html
Hands-On Spatial Data Science with R https://spatialanalysis.github.io/handsonspatialdata/
Using Spatial Data with R https://cengel.github.io/R-spatial/
Spatio-Temporal Statistics with R https://spacetimewithr.org/
Spatial sampling with R https://dickbrus.github.io/SpatialSamplingwithR/
Geographic Data Science with R: Visualizing and Analyzing Environmental Change https://bookdown.org/mcwimberly/gdswr-book/
An Introduction to Spatial Data Analysis and Statistics: A Course in R https://paezha.github.io/spatial-analysis-r/
{sits}: Data Analysis and Machine Learning on Earth Observation Data Cubes with Satellite Image Time Series https://e-sensing.github.io/sitsbook/
Geographic Data Science with Python https://geographicdata.science/book/intro.html
Spatial Data Programming with Python https://geobgu.xyz/py/index.html
Awesome Open Geoscience (в основном Python) https://github.com/softwareunderground/awesome-open-geoscience
Книги на английском языке
Bayes Rules! An Introduction to Applied Bayesian Modeling https://www.bayesrulesbook.com/
Deep Learning and Scientific Computing with R torch https://skeydan.github.io/Deep-Learning-and-Scientific-Computing-with-R-torch/
Data Science for Economists and Other Animals https://grantmcdermott.com/ds4e/index.html
R Notes for Professionals book https://goalkicker.com/RBook/
Hands-On Machine Learning with R https://bradleyboehmke.github.io/HOML/
Data Visualization with R (Kabakoff) https://rkabacoff.github.io/datavis/
Advanced R Solutions https://advanced-r-solutions.rbind.io/index.html
What They Forgot to Teach You About R https://rstats.wtf/index.html
Introduction to Modern Statistics https://openintro-ims.netlify.app/
Psych 252: Statistical Methods for Behavioral and Social Sciences https://psych252.github.io/psych252book/
Learning Statistics with R https://learningstatisticswithr.com/
JavaScript for R https://book.javascript-for-r.com/
R Packages (2e) https://r-pkgs.org/
Yet Again: R + Data Science https://yards.albert-rapp.de/index.html
Mixed Models with R https://m-clark.github.io/mixed-models-with-R/
mlr3book https://mlr3book.mlr-org.com/
The Epidemiologist R Handbook https://epirhandbook.com/en/index.html
Reproducible Science for Busy Researchers https://bookdown.org/alapo/learnr/
Text Mining for Social Scientists https://bookdown.org/f_lennert/text-mining-book/
Circular Visualization in R https://jokergoo.github.io/circlize_book/book/

Hands-On Data Visualization

Interactive Storytelling from Spreadsheets to Code

https://handsondataviz.org/
Data Science: Theories, Models, Algorithms, and Analytics https://srdas.github.io/MLBook/
Computational Analysis of Communication https://cssbook.net/
Causal Inference in R https://www.r-causal.org/

Time Series Analysis

Lecture Notes with Examples in R

https://vlyubchich.github.io/tsar/
Reproducible Analytical Pipelines - Master’s of Data Science https://rap4mads.eu/
Explanatory Model Analysis https://ema.drwhy.ai/
Deep R Programming https://deepr.gagolewski.com/index.html
Data Science for Psychologists https://bookdown.org/hneth/ds4psy/
Sports Data Analysis and Visualization http://mattwaite.github.io/sports/
Computational Genomics with R https://compgenomr.github.io/book/
Open Forensic Science in R (судебно-медицинская экспертиза) https://sctyner.github.io/OpenForSciR/
DevOps for Data Science https://do4ds.com/
Building reproducible analytical pipelines with R https://raps-with-r.dev/
R Without Statistics https://book.rwithoutstatistics.com/
Introduction to Econometrics with R https://www.econometrics-with-r.org/
Creating beautiful tables in R with {gt} https://gt.albert-rapp.de/
From Python to Numpy https://www.labri.fr/perso/nrougier/from-python-to-numpy/
Книги на русском языке
Курс ‘Циклы и функционалы в языке R’ https://selesnow.github.io/iterations_in_r/
Введение в dplyr 1.0.0 https://selesnow.github.io/dplyr_1_0_0_course/
Введение в язык программирования R https://textbook.rintro.ru/
Визуализация и анализ географических данных на языке R https://tsamsonov.github.io/r-geo-course/
Пространственная статистика и моделирование на языке R https://tsamsonov.github.io/r-spatstat-course/
Анализ временных рядов с помощью R https://ranalytics.github.io/tsa-with-r/
Классификация, регрессия и другие алгоритмы Data Mining с использованием R https://ranalytics.github.io/data-mining/
Язык R для пользователей Excel https://bookdown.org/selesnow/r-for-excel-users/
Разработка telegram ботов на языке R https://selesnow.github.io/build_telegram_bot_using_r/index.html
Основы статистики для психологов https://handbook.mathpsy.com/
Наука о данных в R для программы Цифровых гуманитарных исследований https://agricolamz.github.io/DS_for_DH/
Анализ данных и статистика в R https://pozdniakov.github.io/tidy_stats/

Библиотеки

Библиотека адрес
Поиск библиотек по разделам, авторам, ключевым словам и т.д.

https://r-universe.dev/search/

https://rseek.org/

Awesome R Package Development Tools https://indrajeetpatil.github.io/awesome-r-pkgtools/
геопространственное моделирование и географические карты
Awesome R Geospatial https://github.com/sacridini/Awesome-Geospatial#r

CAST: Caret Applications for Spatio-Temporal models

Visualization of nearest neighbor distance distributions

https://hannameyer.github.io/CAST/index.html

spdep

Spatial Dependence: Weighting Schemes and Statistics

https://r-spatial.github.io/spdep/index.html

biscale

Bivarite Mapping with ggplot2

https://cran.r-project.org/web/packages/biscale/vignettes/biscale.html

motif

The motif package implements and extends ideas of the pattern-based spatial analysis in R. It describes spatial patterns of categorical raster data for any defined regular and irregular areas. Patterns are represented quantitatively using built-in signatures based on co-occurrence matrices but also allows for any user-defined functions. It enables spatial analysis such as search, change detection, and clustering to be performed on spatial patterns.

https://jakubnowosad.com/motif/

supercells

The goal of supercells is to utilize the concept of superpixels to a variety of spatial data. This package works on spatial data with one variable (e.g., continuous raster), many variables (e.g., RGB rasters), and spatial patterns (e.g., areas in categorical rasters).

https://jakubnowosad.com/supercells/index.html

rdeck

deck.gl widget for R. Fast Mapbox maps.

https://github.com/qfes/rdeck

https://www.mrworthington.com/articles/rstats/mapping-in-r/

osmextract

The goal of osmextract is to make it easier for people to access OpenStreetMap (OSM) data for reproducible research

https://github.com/ropensci/osmextract

https://cran.r-project.org/web/packages/osmextract/vignettes/osmextract.html

stars: Spatiotemporal Arrays: Raster and Vector Datacubes

Spatiotemporal data (raster maps, time series of satellite images with multiple spectral bands)

https://r-spatial.github.io/stars/index.html

sftime

The aim of sftime is to extent simple features from the sf package to handle (irregular) spatiotemporal data, such as records on earthquakes, accidents, disease or death cases, lightning strikes, data from weather stations, but also movement data which have further constraints.

https://r-spatial.org//r/2022/04/12/sftime-1.html

cubble

Cubble provides a new data structure to manipulate spatio-temporal vector data. It arranges variables into two forms: nested form and long form. The two forms can be switched back and forth for manipulation on the spatial and temporal dimension of the data.

glyph map, spatiotemporal matching, aggregating data spatially

https://huizezhang-sherry.github.io/cubble/index.html

osmplotr

R package to produce visually impressive customisable images of OpenStreetMap (OSM) data downloaded internally from the Overpass API.

https://github.com/ropensci/osmplotr/

googletraffic

Create Georeferenced Traffic Data from the Google Maps Javascript API.

https://dime-worldbank.github.io/googletraffic/

basemapR

base maps

https://github.com/Chrisjb/basemapR

mapiso

The goal of mapiso is to ease the transformation of regularly spaced grids containing continuous data into contour polygons. These grids can be defined by data.frames (x, y, value), sf objects or SpatRasters from terra.
mapsio is a wrapper around isoband.

https://github.com/riatelab/mapiso

simodels

The goal of {simodels} is to provide a simple, tidy, and flexible framework for developing spatial interaction models (SIMs). SIMs estimate the amount of movement between spatial entities and can be used for many things, including to support evidence-based investment in sustainable transport infrastructure and prioritisation of location options for public services.

https://github.com/Robinlovelace/simodels

waywiser

The waywiser R package makes it easier to measure the performance of models fit to 2D spatial data by implementing a number of well-established assessment methods in a consistent, ergonomic toolbox; features include new yardstick metrics for measuring agreement and spatial autocorrelation, functions to assess model predictions across multiple scales, and methods to calculate the area of applicability of a model.

Моделирование геоданных + атокорреляция (Moran’s I).

https://github.com/mikemahoney218/waywiser

https://mikemahoney218.github.io/waywiser/

spdep

A collection of functions to create spatial weights matrix objects from polygon contiguities, from point patterns by distance and tessellations, for summarizing these objects, and for permitting their use in spatial data analysis, including regional aggregation by minimum spanning tree; a collection of tests for spatial autocorrelation, including global Morans I and Gearys C

https://r-spatial.github.io/spdep/

gdistance

gdistance provides classes and functions to calculate various distance measures and routes in heterogeneous geographic spaces represented as grids. Least-cost distances as well as more complex distances based on (constrained) random walks can be calculated. Also the corresponding routes or probabilities of passing each cell can be determined. The package implements classes to store the data about the probability or cost of transitioning from one cell to another on a grid in a memory-efficient sparse format. These classes make it possible to manipulate the values of cell-to-cell movement directly, which offers flexibility and the possibility to use asymmetric values. The novel distances implemented in the package are used in geographical genetics (applying circuit theory), but may also have applications in other fields of geospatial analysis.

https://agrdatasci.github.io/gdistance/index.html

landscapemetrics

landscapemetrics is a R package for calculating landscape metrics for categorical landscape patterns in a tidy workflow. It also allows for calculations of four theoretical metrics of landscape complexity: a marginal entropy, a conditional entropy, a joint entropy, and a mutual information.

https://r-spatialecology.github.io/landscapemetrics/index.html

WhiteboxTools

WhiteboxTools is an advanced geospatial data analysis platform created by Prof. John Lindsay at the University of Guelph’s Geomorphometry and Hydrogeomatics Research Group (GHRG).

https://www.whiteboxgeo.com/manual/wbt_book/preface.html

roughsf

Using the java script library rough.js to draw sketchy, hand-drawn-like maps
(Checkout ggrough for turning general ggplot objects into sketchy drawings and roughnet for networks)

https://github.com/schochastics/roughsf

tidyterra

The goal of {tidyterra} is to provide common methods of the tidyverse packages for objects created with the {terra} package: SpatRaster and SpatVector. It also provides geoms for plotting these objects with {ggplot2}.

https://dieghernan.github.io/202205_tidyterra/

sits

{sits} is an open source R package for satellite image time series analysis.

https://github.com/e-sensing/sits

mlr3spatiotempcv

{mlr3spatiotempcv} makes use of {plotly} to create the 3D plots for visualizing spatiotemporal folds created via the CLUTO algorithm. Arranging multiple 3D plots in {plotly} is done via 3D subplots.

https://mlr3spatiotempcv.mlr-org.com/articles/spatiotemp-viz.html

climetrics

climetrics is an extensible and reproducible R package to spatially quantify and explore multiple dimensions of climate change.

https://github.com/shirintaheri/climetrics

rayvista

rayvista is an R package providing a small plugin for the fabulous {rayshader} package. It provides a single main function plot_3d_vista which allows the user to create a 3D visualisation of any location on earth. It is reliant on two other brilliant packages: {maptiles} and {elevatr}.

https://github.com/h-a-graham/rayvista

https://github.com/PennMUSA/MasterClass2019_3DMappingAndViz

globe4r

Interactive globes for R via globe.gl.

Интерактивный глобус.

https://globe4r.john-coene.com/index.html

accessibility

{accessibility} offers a set of fast and convenient functions to calculate multiple transport accessibility measures.

https://ipeagit.github.io/accessibility/

rivnet

An R-package allowing seamless extraction of river networks from Digital Elevation Models data..

https://lucarraro.github.io/rivnet/
Leaflet
leaflegend Recipes https://roh.engineering/posts/2022/07/leaflegend-recipes/

leafdown

The leafdown package provides drilldown functionality for leaflet choropleths in R Shiny apps.

https://hoga-it.github.io/leafdown/articles/Multilevel.html

leaflet.minicharts

Minicharts for dynamic {leaflet} maps.

https://github.com/rte-antares-rpackage/leaflet.minicharts
Shiny and dashboards
Awesome Shiny Extensions https://github.com/nanxstats/awesome-shiny-extensions

shinysurveys: Easily Create and Deploy Surveys in Shiny

{shinysurveys} provides easy-to-use, minimalistic code for creating and deploying surveys in Shiny. Originally inspired by Dean Attali’s shinyforms, our package provides a framework for robust surveys, similar to Google Forms, in R with Shiny.

https://github.com/jdtrat/shinysurveys

Shiny UI Editor

A visual tool for building the UI portion of a Shiny application that generates clean and human-readable code.

https://rstudio.github.io/shinyuieditor/

shinyMobile

Develop outstanding {shiny} apps for iOS, Android, desktop as well as beautiful {shiny} gadgets. {shinyMobile} is built on top of the latest Framework7 template.

https://github.com/RinteRface/shinyMobile

dashboard-builder

building shiny dashboards

https://github.com/petergandenberger/dashboard-builder

designer

{designer} has the ability to build {bs4Dash} dashboard pages and show custom CSS

https://ashbaldry.shinyapps.io/designer/
ggplot2

ggdist

Visualizations of Distributions and Uncertainty

https://mjskay.github.io/ggdist/reference/index.html

ggdensity

{ggdensity} extends ggplot2 providing more interpretable visualizations of density estimates based on highest density regions (HDRs).

https://github.com/jamesotto852/ggdensity

ggblend

Visualizations of scatterplot with overlaps

https://mjskay.github.io/ggblend/

ggmagnify

ggmagnify creates a magnified inset of part of a ggplot object. Borders can be drawn around the target area and the inset, along with projection lines from one to the other.

https://github.com/hughjonesd/ggmagnify

ggstatplot

{ggplot2} Based Plots with Statistical Details

https://indrajeetpatil.github.io/ggstatsplot/?utm_source=Data_Elixir&utm_medium=social

ggsignif

This package provides an easy way to indicate if two groups are significantly different.

https://const-ae.github.io/ggsignif/

ggfx

The ggfx package is a way to gain access to pixel-level image filters in R plotting, especially when plotting with ggplot2.

image blur

https://ggfx.data-imaginist.com/articles/ggfx.html

ggrough

ggrough is an R package that converts your ggplot2 plots to rough/sketchy charts, using the excellent javascript roughjs library.

https://xvrdm.github.io/ggrough/

roughnet

Using the java script library rough.js to draw sketchy, hand-drawn-like networks.
(Checkout ggrough for turning general ggplot objects into sketchy drawings)

http://roughnet.schochastics.net/

ggparty

ggplot2 visualizations for the partykit package (trees with regression subplots).

https://github.com/martin-borkovec/ggparty

ggwrap

{ggwrap} wraps a {ggplot2} plot over multiple rows, to make plots with long x axes easier to read.

Добавляет градиент для временных рядов в {ggplot}.

https://github.com/wilkox/ggwrap

ggokabeito

ggokabeito provides ggplot2 and ggraph scales to easily use the discrete, colorblind-friendly ‘Okabe-Ito’ palette in your data visualizations.

https://malcolmbarrett.github.io/ggokabeito/index.html

trelliscopejs

Trelliscope is a visualization approach based on the idea of “small multiples” or Trellis Display, where data are split into groups and a plot is made for each group, with the resulting plots arranged in a grid.

https://hafen.github.io/trelliscopejs/index.html

swipeR

Carousels in R.

https://github.com/stla/swipeR

MetBrewer

Palettes inspired by works at the Metropolitan Museum of Art in New York. Pieces selected come from various time periods, regions, and mediums.

палитры на основе картин!

https://github.com/BlakeRMills/MetBrewer

camcorder

{camcorder} is an an R package to track and automatically save graphics generated with ggplot2 that are created across one or multiple sessions with the eventual goal of creating a GIF showing all the plots saved sequentially during the design process.

https://thebioengineer.github.io/camcorder/index.html
табличные даные и оформление таблиц

tabyls: a tidy, fully-featured approach to counting things

Таблицы с процентовками.

https://cran.r-project.org/web/packages/janitor/vignettes/tabyls.html

gtsummary

Provides an elegant and flexible way to create publication-ready analytical and summary tables using the R programming language.

https://www.danieldsjoberg.com/gtsummary/

gtExtras

The goal of {gtExtras} is to provide some additional helper functions to assist in creating beautiful tables with {gt}.

https://cran.r-project.org/web/packages/gtExtras/readme/README.html

reactablefmtr

The {reactablefmtr} package streamlines and enhances the styling and formatting of tables built with the {reactable} R package. The {reactablefmtr} package provides many conditional formatters that are highly customizable and easy to use.

https://kcuilla.github.io/reactablefmtr/index.html

dm

Are you using multiple data frames or database tables in R? Organize them with {dm}.

https://cynkra.github.io/dm/

crosstable

Crosstable is a package centered on a single function, crosstable, which easily computes descriptive statistics on datasets. It can use the tidyverse syntax and is interfaced with the package officer to create automatized reports.

https://danchaltiel.github.io/crosstable/

pointblank

With the pointblank package it’s really easy to methodically validate your data whether in the form of data frames or as database tables. On top of the validation toolset, the package gives you the means to provide and keep up-to-date with the information that defines your tables.

https://github.com/rich-iannone/pointblank

https://www.infoworld.com/article/3693329/create-a-free-data-dictionary-with-r.html

tidytable

tidytable is a data frame manipulation library for users who need data.table speed but prefer tidyverse-like syntax.

https://markfairbanks.github.io/tidytable/

nplyr

{nplyr} is a grammar of nested data manipulation that allows users to perform dplyr-like manipulations on data frames nested within a list-col of another data frame. Most dplyr verbs have nested equivalents in nplyr.

https://github.com/markjrieke/nplyr

https://cran.r-project.org/web/packages/nplyr/vignettes/Use-case-for-nplyr.html

R Markdown & Quarto

postcards

Create simple, beautiful personal websites and landing pages using only R Markdown.

https://github.com/seankross/postcards

Steve’s R Markdown Templates

stevetemplates is an R package to help you create lovely R Markdown documents, primarily for conversion to LaTeX PDFs.

https://github.com/svmiller/stevetemplates

posterdown

Posters in R Markdown built on a LaTeX format.

https://github.com/math-mcshane/posterdownLaTeX

fusen

{fusen} inflates a Rmarkdown file to magically create a package.

https://github.com/Thinkr-open/fusen/

officer

The officer package lets R users manipulate Word (.docx) and PowerPoint (*.pptx) documents. In short, one can add images, tables and text into documents from R. An initial document can be provided; contents, styles and properties of the original document will then be avai & Quartolable.

https://davidgohel.github.io/officer/

babelquarto

The goal of babelquarto is to render a Quarto multilingual book structured like the rOpenSci dev guide:

  • each qmd is present once for the main language,

  • and once more for each other language with an extension à la .es.qmd

https://docs.ropensci.org/babelquarto/
презентации

flipbookr

“Flipbooks” present side-by-side, aligned, incremental code-output evolution via automated code parsing and reconstruction. Like physical flipbooks, they let the ‘reader’ watch a scene evolve at their own pace.

https://evamaerey.github.io/flipbookr/

xaringanExtra

Extras for xaringan

https://www.garrickadenbuie.com/blog/xaringanextra-v0.6.0/
ML and modeling

vetiver

The goal of vetiver is to provide fluent tooling to version, share, deploy, and monitor a trained model

https://vetiver.rstudio.com/

nbdev

with Jupyter Notebooks. Write, test, document, and distribute software packages and technical articles — all in one place, your notebook.

https://nbdev.fast.ai/

workflowsets

The goal of workflowsets is to allow users to create and easily fit a large number of models. workflowsets can create a workflow set that holds multiple workflow objects. These objects can be created by crossing all combinations of preprocessors (e.g., formula, recipe, etc) and model specifications. This set can be tuned or resampled using a set of specific functions.

https://workflowsets.tidymodels.org/index.html

tidyfit

tidyfit is an R-package that facilitates and automates linear and nonlinear regression and classification modeling in a tidy environment. The package includes methods such as the Lasso, PLS, time-varying parameter or Bayesian model averaging regressions, and many more.

https://tidyfit.unchartedml.com/

tidyclust

The goal of tidyclust is to provide a tidy, unified interface to clustering models. The packages is closely modeled after the parsnip package.

https://emilhvitfeldt.github.io/tidyclust/index.html

marginaleffects

Compute and plot adjusted predictions, contrasts, marginal effects, and marginal means for 68classes of statistical models in R. Conduct linear and non-linear hypothesis tests using the delta method.

https://vincentarelbundock.github.io/marginaleffects/index.html

easystats

easystats is a collection of R packages, which aims to provide a unifying and consistent framework to tame, discipline, and harness the scary R statistics and their pesky models.

https://easystats.github.io/easystats/

nestedmodels

The goal of nestedmodels is to allow the modelling of nested data. Some models only accept certain predictors. For panel data, it is often desirable to create a model for each panel.

https://ashbythorpe.github.io/nestedmodels/
time series

tidyverts

Tidy tools for time series

https://tidyverts.org/

ts2net

ts2net is an R package to transform one or multiple time series into networks. This transformation is useful to model and study complex systems, which are commonly represented by a set of time series extracted from the small parts that compose the system.

https://github.com/lnferreira/ts2net

TSstudio

The TSstudio package provides a set of tools descriptive and predictive analysis of time series data. That includes utility functions for preprocessing time series data, interactive visualization functions based on the plotly package engine, and set of tools for training and evaluating time series forecasting models from the forecast, forecastHybrid, and bsts packages.

https://ramikrispin.github.io/TSstudio/
деревья

data.tree

Trees

https://cran.r-project.org/web/packages/data.tree/vignettes/data.tree.html

TreeDist

Calculate tree similarity

https://cran.r-project.org/web/packages/TreeDist/vignettes/Using-TreeDist.html

vtree

A flexible R package for displaying nested subsets of a data frame.

https://nbarrowman.github.io/vtree
работа с данными

santoku

A versatile cutting tool for R

https://hughjonesd.github.io/santoku/index.html

faux

Simulate from Existing Data

https://debruine.github.io/faux/articles/sim_df.html

datefixR

datefixR standardizes dates in different formats or with missing data: for example dates which have been provided from free text web forms.

https://docs.ropensci.org/datefixR/index.html
Python and Julia

suiba (Python)

siuba (小巴) is a port of dplyr and other R libraries. It supports a tabular data analysis workflow.

https://github.com/machow/siuba

Polars (Python)

Lightning-fast DataFrame library for Rust and Python.

https://www.pola.rs/

geemap (Python)

A Python package for interactive mapping with Google Earth Engine, ipyleaflet, and ipywidgets.

https://github.com/giswqs/geemap

TidyTable.jl (Julia)

This is a project that wraps the {tidytable} package in R, which provides {tidyverse} bindings to the lightning-fast {data.table} package. Unlike other DataFrames packages and meta-packages in Julia, this package allows you to provide syntax exactly as you would write it in tidyverse.

https://github.com/kdpsingh/TidyTable.jl

Tidier.jl (Julia)

Tidier.jl is a 100% Julia implementation of the R tidyverse mini-language in Julia. Powered by the DataFrames.jl package and Julia’s extensive meta-programming capabilities, Tidier.jl is an R user’s love letter to data analysis in Julia.

https://kdpsingh.github.io/Tidier.jl/dev/
работа с текстом

text

An R-package for analyzing natural language with transformers from HuggingFace using Natural Language Processing and Machine Learning.

https://r-text.org/

unglue

The package unglue features functions such as unglue(), unglue_data() and unglue_unnest() which provide in many cases a more readable alternative to base regex functions. Simple cases indeed don’t require regex knowledge at all.

https://github.com/moodymudskipper/unglue

text2vec

text2vec is an R package which provides an efficient framework with a concise API for text analysis and natural language processing (NLP).

https://text2vec.org/index.html
разное

datadrivencv

The goal of datadrivencv is to ease the burden of maintaining a CV by separating the content from the output by treating entries as data. (Красивые CV.)

https://github.com/nstrayer/datadrivencv

namedropR

provides ‘visual citations’ containing the metadata of a scientific paper and a ‘QR’ code.

https://nucleic-acid.github.io/namedropR/index.html

stenR

{stenR} is a package tailored mainly for users and creators of psychological questionnaires, though other social science researchers and survey authors can benefit greatly from it.

https://statismike.github.io/stenR/index.html

gpttools

The goal of gpttools is to extend gptstudio for R package developers to more easily incorporate use of large language models (LLMs) into their project workflows. (ChatGPT)

https://github.com/JamesHWade/gpttools

gptstudio

The goal of gptstudio is for R programmers to easily incorporate use of large language models (LLMs) into their project workflows. These models appear to be a step change in our use of text for knowledge work, but you should carefully consider ethical implications of using these models.

https://michelnivard.github.io/gptstudio/

ggsurvfit

The ggsurvfit package eases the creation of time-to-event (aka survival) summary figures with ggplot2. The concise and modular code creates images that are ready for publication or sharing.

https://www.danieldsjoberg.com/ggsurvfit/index.html

marginaleffects

Compute and plot predictions, slopes, marginal means, and comparisons (contrasts, risk ratios, odds ratios, etc.) for over 70 classes of statistical models in R. Conduct linear and non-linear hypothesis tests, as well as equivalence tests using the delta method.

https://vincentarelbundock.github.io/marginaleffects/index.html

Platypus

R package for object detection and image segmentation.

https://datascienceguts.com/2020/10/platypus-r-package-for-object-detection-and-image-segmentation/

bslib

The bslib R package provides tools for customizing Bootstrap themes directly from R, making it much easier to customize the appearance of Shiny apps & R Markdown documents.

https://rstudio.github.io/bslib/index.html

bib2df

Parse a BibTeX file to a tibble.

https://docs.ropensci.org/bib2df/

mailmerge

Mail merge from R using markdown documents and gmail.

https://andrie.github.io/mailmerge/

countdown

countdown makes it easy to drop in a simple countdown timer in slides and HTML documents written in R Markdown.

https://github.com/gadenbuie/countdown

containerit

containerit packages R script/session/workspace and all dependencies as a Docker container by automagically generating a suitable Dockerfile.

https://o2r.info/containerit/

WebR - R in the Browser

WebR is a version of the statistical language R compiled for the browser and Node.js using WebAssembly, via Emscripten.

https://docs.r-wasm.org/webr/latest/

https://github.com/coatless/quarto-webr

https://rd.thecoatlessprofessor.com/webR-quarto-demos/webr-quarto-html-demo.html

https://www.tidyverse.org/blog/2023/03/webr-0-1-0/

https://rud.is/b/2023/03/12/almost-bare-bones-webr-starter-app/

https://github.com/hrbrmstr/webr-experiments

https://interactive-lessons.weecology.org/

https://github.com/ethanwhite/datacarp-interactive

Полезные ссылки

Ресурс Ссылка
Awesome R https://github.com/qinwf/awesome-R
awesome-r-dataviz https://krzjoa.github.io/awesome-r-dataviz/
Awesome R Learning Resources https://github.com/iamericfletcher/awesome-r-learning-resources
Все, везде и сразу https://github.com/sindresorhus/awesome
R resources (free courses, books, tutorials, & cheat sheets) https://paulvanderlaken.com/2017/08/10/r-resources-cheatsheets-tutorials-books/

THE GENERATIVE AI LANDSCAPE

A Collection of Awesome Generative AI Applications

https://ai-collection.org/
Generate SQL with AI https://www.text2sql.ai/
What’s new in the tidyverse https://ivelasq.github.io/2023-03-22_whats-new-in-the-tidyverse/
Cool Infographics https://coolinfographics.com/dataviz-guides
#rstats [Mastodon] https://mastodon.cloud/tags/rstats
Color Brewer https://colorbrewer2.org/
R Color Palettes https://r-charts.com/color-palettes/
Color palettes generator https://coolors.co/
Colors for maps https://mapcolpal.org/
Tol Color Schemes https://waterdata.usgs.gov/blog/tolcolors/
Dataviz Inspiration

https://www.dataviz-inspiration.com/

https://www.behance.net/search/projects?tools=242165229

bonsai.css

A Utility Complete CSS Framework for less than 45kb

https://www.bonsaicss.com/

Carbon

Create and share beautiful images of your source code.

https://carbon.now.sh/
Эффективная организация работы в R

https://ubogoeva.github.io/how_to_install_R.html

https://telegra.ph/R-how-to-organize-work-08-08

lordicon (анимированные иконки) https://lordicon.com/icons
Dataviz Inspiration https://www.dataviz-inspiration.com/
from Data to Viz https://www.data-to-viz.com/
INFORMATION IS BEAUTIFUL AWARDS https://www.datavisualizationsociety.org/iib-awards
The NY Times 2022 https://www.nytimes.com/interactive/2022/12/28/us/2022-year-in-graphics.html
Bloomberg: The 2022 year in Graphics https://www.bloomberg.com/graphics/2022-in-graphics/
The quick BibTeX guide https://www.bibtex.com/e/entry-types/
ggplot2
Awesome ggplot2 https://github.com/erikgahner/awesome-ggplot2
ggplot2 Theme Elements Reference Sheet

https://isabella-b.com/blog/ggplot2-theme-elements-reference/

https://github.com/isabellabenabaye/ggplot2-reference

https://henrywang.nl/ggplot2-theme-elements-demonstration/

https://cmdlinetips.com/2021/05/tips-to-customize-text-color-font-size-in-ggplot2-with-element_text/

Accelerate your plots with ggforce https://rviews.rstudio.com/2019/09/19/intro-to-ggforce/
Top 50 ggplot2 Visualizations http://r-statistics.co/Top50-Ggplot2-Visualizations-MasterList-R-Code.html
30 Day Map Challenge (Bob Rudis) https://rud.is/books/30-day-map-challenge/

Level Up Your Labels: Tips and Tricks for Annotating Plots

визуализация в {ggplot2}

https://www.cararthompson.com/talks/user2022?s=03
Quarto and R Markdown
A Quarto a tip a day https://mine-cetinkaya-rundel.github.io/quarto-tip-a-day/
GitHub quartopub https://github.com/topics/quartopub
Quarto tips I’ve found around the Web https://apps.machlis.com/shiny/quartotips/
Quarto social embeds (Twitter, YouTube etc.) https://github.com/sellorm/quarto-social-embeds
RMarkdown/Quarto Tips and Tricks https://indrajeetpatil.github.io/RmarkdownTips/
R Markdown Tips, Tricks, and Shortcuts https://www.dataquest.io/blog/r-markdown-tips-tricks-and-shortcuts/
Creating your personal website using Quarto https://ucsb-meds.github.io/creating-quarto-websites/
Publish/Deploy Quarto Documents/Projects as a Docker Container https://github.com/mcanouil/quarto-publish-docker
Let’s make maps with bertin.js in Quarto https://neocarto.github.io/bertin/examples/quarto.html
Quarto Experiments https://jimjam-slam.github.io/quarto-experiments/
6 Productivity Hacks for Quarto https://www.rstudio.com/blog/6-productivity-hacks-for-quarto/
Letterbox theme for Quarto (this style is inspired of xaringan) https://github.com/EmilHvitfeldt/quarto-letterbox
How to Format Citations and Bibliographies in RStudio with CiteDrive and Quarto https://bibtex.eu/blog/how-to-format-citations-and-bibliographies-in-rstudio-with-citedrive-and-quarto/
Porting a distill blog to quarto https://blog.djnavarro.net/posts/2022-04-20_porting-to-quarto/
Render parameterized reports with Quarto https://www.jhelvy.com/posts/2023-02-28-parameterized-pdfs-with-quarto/
MyST - Markedly Structured Text https://myst-parser.readthedocs.io/en/latest/index.html

GOSTdown

Набор шаблонов и скриптов для автоматической вёрстки электронной документации по ГОСТ 19.xxx (ЕСПД) и ГОСТ 7.32 (отчёт о научно-исследовательской работе) в форматах docx. Исходными данными при создании docx являются текстовые файлы формата .md (Markdown) и .bib (BibTeX). Также из docx производятся PDF-файлы.

https://github.com/NazarovKI/gostdown
rspatial
CRAN Task View: Analysis of Spatial Data https://cran.r-project.org/web/views/Spatial.html
Terrain Tiles (растровые карты) https://registry.opendata.aws/terrain-tiles/
Spatial Data Science with R (terra & raster) https://rspatial.org/terra
Maps and Geographical Data http://homepage.stat.uiowa.edu/~luke/classes/STAT4580-2022/maps.html
Making maps with R https://www.paulamoraga.com/tutorial-maps/
Drawing waterlines with ggplot2 in R https://brunomioto.com/posts/waterlines.html
Maps following the #MapPromptMonday weekly mapping project https://github.com/jmcastagnetto/my_map_prompt_monday/tree/main
Maps with {shiny} https://www.spsanderson.com/steveondata/posts/rtip-2023-05-04/index.html
Tidy storm trajectories https://r-spatial.org/r/2017/08/28/nest.html
Accessing elevation data in R with the elevatr package (растровые карты высот) https://cran.r-project.org/web/packages/elevatr/vignettes/introduction_to_elevatr.html

Sea level rising in Hong Kong

затопления в Гонконге

https://github.com/KHwong12/sea-level-rising-HK
Introduction to Geospatial Raster and Vector Data with R: References https://uw-madison-datascience.github.io/r-raster-vector-geospatial/reference/
Mapping Raster Data in the Tidyverse https://rpubs.com/timothyfraser/mapping_raster_data_in_the_tidyverse
Creating presence-absence rasters in 2022 https://amywhiteheadresearch.wordpress.com/2022/04/19/creating-presence-absences-rasters-in-2022/
Spatial Feature Engineering for Geomarketing https://github.com/Denikozub/Geomarketing
Kriging examples

https://github.com/gkaramanis/tidytuesday/tree/master/2022/2022-week_51

https://github.com/michael-millett/tidy-tuesday/tree/main/2022/12-20

FAIRE DES CARTOGRAMS DANS R https://transcarto.github.io/rcartograms/TRANSCARTO_cartograms.html
Travel time calculation with R and data visualization with Observable https://rysebaert.github.io/climbing_paris/
Using R for Spatial Data Analysis https://michaeldorman.github.io/R-Spatial-Workshop-at-CBS-2021/main.html#Setup:_sample_data
desCartes recognises roads on old maps, and converts them to vector lines that can be used in GIS applications and historical transport network analysis. https://github.com/docuracy/desCartes
Workshop: Getting started with R and R-spatial https://bakaniko.github.io/foss4g2022-getting-started-rspatial/index.html

Multiple colour scales in choropleth maps with {ggnewscale}

карта Австралии

https://labs.ala.org.au/posts/2022-05-23-ggnewscale/?s=03
Convex and alpha hulls

https://labs.ala.org.au/posts/2022-10-12_alpha-hulls/

https://stackoverflow.com/questions/71393563/creating-polygons-from-sparse-data-in-r

https://babichmorrowc.github.io/post/2019-03-18-alpha-hull/

OSRM Travel-time calculation with R and data visualization with Observable https://rysebaert.github.io/climbing_paris/
Plotting spatial neighbors in ggplot2 (How to visualize spatial neighbors using ggplot2, spdep, and sf.) Правило ферзя https://mbjoseph.github.io/posts/2018-12-27-plotting-spatial-neighbors-in-ggplot2/
StreetComplete is an easy to use editor of OpenStreetMap data available for Android. https://github.com/streetcomplete/StreetComplete
OpenStreetMap (OSM) Road Surface Classifier https://github.com/jdalrym2/road_surface_classifier

JuliaGeo

JuliaGeo is an organization that contains a number of related Julia projects for manipulating, querying, and processing geospatial geometry data. We aim to provide a common interface between geospatial packages.

https://juliageo.org/

Plotting rasters

The ‘raster’ package has a plot method for Raster objects that has many options to customise the plot. Unfortunately the documentation is in two places, and some arguments are not documented at all. Here the arguments which you can use when plotting a RasterLayer object are covered.

https://mmeredith.net/blog/2019/plotting_rasters.htm

geospatial-learning

Resources related to geospatial analysis in (mostly) R.

https://github.com/spcanelon/geospatial-learning
Fire Risk Analysis using QGIS https://dges.carleton.ca/CUOSGwiki/index.php/Fire_Risk_Analysis_using_QGIS
ESRI: Disaster Response Program https://www.esri.com/en-us/disaster-response/overview
Данные о природных пожарах в вашей Веб ГИС (NextGIS) https://nextgis.ru/blog/ngw_fires/
Nature Geoscience https://www.nature.com/ngeo/research-articles
ML and modeling
Machine_Learning_exercises https://github.com/anastazijaverovic/Machine_Learning_Algorithms_R
Experimenting with machine learning in R with tidymodels and the Kaggle titanic dataset https://oliviergimenez.github.io/blog/learning-machine-learning/
Binary image classification using Keras in R: Using CT scans to predict patients with Covid https://oliviergimenez.github.io/blog/image-classif/
Tinker With a Neural Network Right Here in Your Browser https://playground.tensorflow.org/
Python and Julia
Getting started with Python using R and reticulate https://rtichoke.netlify.app/post/getting_started_with_reticulate/
Python and R Tips https://cmdlinetips.com/

JuliaGeo

JuliaGeo is an organization that contains a number of related Julia projects for manipulating, querying, and processing geospatial geometry data. We aim to provide a common interface between geospatial packages.

https://juliageo.org/
Text
Regular Expressions https://regex101.com/
Анализ текстов в R https://agricolamz.github.io/2020.11.01_appcogn_text_analysis/
misc
Setting Up Docker-Compose for ShinyProxy https://github.com/kassambara/shinyproxy-config
Шпаргалка по Docker https://devops.org.ru/docker-summary
GitHub Actions for the R language https://github.com/r-lib/actions
API as a package: Testing https://www.jumpingrivers.com/blog/api-as-a-package-testing/
How to customize Mac terminal with open source tools (iTerm2, Oh My Zsh, and Powerlevel10k) https://opensource.com/article/20/8/iterm2-zsh
23 RStudio Tips, Tricks, and Shortcuts https://www.dataquest.io/blog/rstudio-tips-tricks-shortcuts/
VSCode vs RStudio — Worth the switch? https://karatsidhu.medium.com/vscode-vs-rstudio-worth-the-switch-7a4415fc3275
VSCode Snippets for R and R Markdown https://github.com/SidhuK/r-vscode-snippets
SlidesGo: Free Google Slides and PowerPoint templates to boost your presentations https://slidesgo.com/

Design your own beautiful brand

Use Looka’s AI-powered platform to design a logo and build a brand.

https://looka.com/
Questionnaires and Surveys: Analyses with R https://slcladal.github.io/surveys.html
How to Generate Word Docs in Shiny with officer, flextable, and shinyglide https://appsilon.com/generating-word-documents-from-table-data-in-shiny/
Frustration: One Year With R https://github.com/ReeceGoding/Frustration-One-Year-With-R
Психология: 39 исследований человеческого восприятия https://awdee.ru/psychology-39-studies-of-human-perception/
Financial Times Visual Vocabulary https://github.com/Financial-Times/chart-doctor/tree/main/visual-vocabulary
LearningApps.org создан для поддержки обучения и преподавания с помощью небольших общедоступных интерактивных модулей (далее - упражнений). Данные упражнения создаются онлайн и в дальнейшем могут быть использованы в образовательном процессе. https://learningapps.org/
Winners of the 2022 Table Contest https://posit.co/blog/winners-of-the-2022-table-contest/
Reference guide for commonly used functions in education research data wrangling https://github.com/Cghlewis/data-wrangling-functions/wiki
Creating Standalone Apps from Shiny with Electron [2023, macOS M1] https://r-posts.com/creating-standalone-apps-from-shiny-with-electron-2023-macos-m1/

Видеоблоги

Ресурс Ссылка
David Robinson Tidy Tuesday https://www.youtube.com/user/safe4democracy
Julia Silge https://www.youtube.com/JuliaSilge/
Andrew Couch https://www.youtube.com/c/AndrewCouch
Milos Popovic Makes Maps https://www.youtube.com/@milos-makes-maps
Kelsey Gonzalez https://www.youtube.com/c/KelseyGonzalez
Shiny Developer Series https://www.youtube.com/c/ShinyDeveloperSeries
Business Science https://www.youtube.com/@BusinessScience
Lander Analytics https://www.youtube.com/channel/UC2-hKemnrmVCH_29duyJ26A
Rstudio https://www.youtube.com/c/RStudioPBC
R4DS Online Learning Community https://www.youtube.com/c/R4DSOnlineLearningCommunity
Spatial network analysis with the {sfnetworks} package https://youtu.be/2cCXUYgEtGw
R4marketing https://www.youtube.com/@R4marketing
Основы программирования для географов https://www.youtube.com/channel/UC99_v_T0CTEsYiY2O6YsvOA
Artem Golubnichy https://www.youtube.com/channel/UCLIphG_4eXZqf4C6VBg8pUw/videos
The Data Thread https://www.youtube.com/c/TheDataThread

Tidy Tuesday Dataviz

Ресурс / имя адрес
Cédric Scherer https://github.com/z3tt/TidyTuesday/tree/main/plots
Georgios Karamanis https://github.com/gkaramanis/tidytuesday
Jake Kaupp https://github.com/jkaupp/tidytuesdays
Jenn Schilling

https://github.com/jennschilling/tidytuesday-2021

https://github.com/jennschilling/tidytuesday-2022

Maia Pelletier https://github.com/MaiaPelletier/tidytuesday
Tanya Shapiro https://github.com/tashapiro

Курсы

Курс адрес
Supervised Machine Learning: Case Studies in R https://supervised-ml-course.netlify.app/
Get Started with Tidymodels https://www.tidymodels.org/start/
Coding for Data Analysis with R https://github.com/gabors-data-analysis/da-coding-rstats#sources

Claus O. Wilke

Data Visualization in R

https://wilkelab.org/SDS375/syllabus.html
Мастер-класс от ИНИД “Как построить карту, используя R и QGIS” https://github.com/Irrrkah/russia_population_mk
Автоматизированный сбор больших данных в экономико-социологических исследованиях https://course.rintro.ru/index.html
Data science for economists https://github.com/uo-ec607/lectures
Course materials for: Geospatial Data Science https://github.com/mszell/geospatialdatascience
Geospatial Analysis and Representation for Data Science (Python) https://napo.github.io/geospatial_course_unitn/lessons/
purrr tutorial https://jennybc.github.io/purrr-tutorial/
Advanced NLP with spaCy https://course.spacy.io/en/
Use R, ggplot2, and the principles of graphic design to create beautiful and truthful visualizations of data https://datavizm20.classes.andrewheiss.com/
TOP 100 R TUTORIALS : STEP BY STEP GUIDE https://www.listendata.com/p/r-programming-tutorials.html
Workshops https://r.qcbs.ca/Workshops/#english

Наборы данных и хакатоны

Название адрес
ИНИД https://data-in.ru/
Tidy Tuesday https://github.com/rfordatascience/tidytuesday

#30DayMapChallenge

Daily social mapping project happening every November

https://github.com/tjukanovt/30DayMapChallenge
NoFireWithAI: прогнозирование степени пожароопасности https://github.com/sberbank-ai/no_fire_with_ai_aij2021
NoFloodWithAI: прогнозирование паводков на реке Амур https://github.com/ai-forever/no_flood_with_ai_aij2020
Карта ДТП https://dtp-stat.ru/opendata
rspatialdata (раздел Tutorials) https://rspatialdata.github.io/index.html
Emergency DataHack https://emergencydatahack.ru/
Winning a Flood-Forecasting Hackathon with Hydrology and AutoML https://towardsdatascience.com/winning-a-flood-forecasting-hackathon-with-hydrology-and-automl-156a8a7a4ede
РИСТАТ https://ristat.org/
MakeoverMonday https://www.makeovermonday.co.uk/data/
Dataset Search https://datasetsearch.research.google.com/
Gapminder https://www.gapminder.org/data/
Awesome Public Datasets https://github.com/awesomedata/awesome-public-datasets
Pre-classified data (спутниковые данные) https://andrewmaclachlan.github.io/CASA0023-lecture-6/?panelset1=data2#6
The goal of the climate R package is to automatize downloading of meteorological and hydrological data from publicly available repositories https://github.com/bczernecki/climate
Метеоданные

http://meteo.ru/data

https://www.ncei.noaa.gov/cdo-web/

https://psl.noaa.gov/data/gridded/data.cpc.globaltemp.html

10 Free GIS Data Sources: Best Global Raster and Vector Datasets https://gisgeography.com/best-free-gis-data-sources-raster-vector/
30 самых крупных датасетов для машинного обучения в TensorFlow https://telegra.ph/30-samyh-krupnyh-datasetov-dlya-mashinnogo-obucheniya-v-TensorFlow-11-25
RoadDetections: Bing Maps is releasing mined roads around the world. We have detected 47.8M km of all roads and 1165K km of roads missing from OSM. Mining is performed with Bing Maps imagery between 2020 and 2022 including Maxar and Airbus. https://github.com/microsoft/RoadDetections

Shiny Examples

Название адрес
Hastings Half-Marathon https://matt-dray.github.io/hastings-half/
Unravel data manipulation examples https://nshrest.shinyapps.io/datawhats/
Announcing new R Shiny UI components https://shiny.rstudio.com/blog/announcing-new-r-shiny-ui-components.html

Презентации

Название адрес
Outrageously efficient exploratory data analysis with Apache Arrow and dplyr https://jthomasmock.github.io/arrow-dplyr/#/
Introduction to R for Social Scientists https://pittmethods.github.io/r4ss/
Tidyverse and ML
Introduction to the Tidyverse data manipulation https://oliviergimenez.github.io/reproducible-science-workshop/slides/3_dplyr.html
Tidymodels, Virtually (Alison Hill) https://www.apreshill.com/blog/2020-06-how-i-taught-tidymodels-virtually/
Applied Machine Learnring (Max Kuhn) https://rstudio-conf-2020.github.io/applied-ml/README.html
Having a purrr-tastic time (Emil Hvitfeldt) https://emilhvitfeldt.github.io/talk-purrr-ocrug-2023/#/section
Machine learning with tidymodels https://workshops.tidymodels.org/
Improving text preprocessing using textrecipies (Emil Hvitfeldt) https://emilhvitfeldt.github.io/useR2022-textrecipes/#/section
Table data
Introduction to {gt} + {gtsummary} Packages http://www.danieldsjoberg.com/gt-and-gtsummary-presentation/
ggplot2
Designing ggplots https://designing-ggplots.netlify.app/#1
CÉDRIC SCHERER [Selected Presentations]

https://www.cedricscherer.com/top/about/#presentations

https://z3tt.github.io/hands-on-ggplot2/

https://z3tt.github.io/hands-on-ggplot2/slides/04-annotation.html#1

rspatial

Jittering and routing options for converting origin-destination data into route networks

(Robin Lovelace)

https://www.robinlovelace.net/presentations/its-jittering.html
sfnetworks: Tidy Geospatial Networks in R https://sfnetworks.github.io/foss4g-workshop/slides/slides#1
Geocomputation with R’s guide to reproducible spatial data analysis http://jakubnowosad.com/ogh2022/#/title-slide
Coordinate reference systems https://rsbivand.github.io/csds_jan23/csds_crs_workshop_230119.html
R Markdown and presentations
Extraordinary slides using xaringanExtra https://xeurmia.netlify.app/?panelset1=panel-12#1
Authoring Websites, Documents, and more with RMarkdown https://afredston.github.io/markdown-sortee/#1
Quarto
Quarto as Reveal.js Slides https://jeremy-allen.github.io/quarto-demo/#/
From R Markdown to Quarto [workshop] https://rstudio-conf-2022.github.io/rmd-to-quarto/
Quarto for the curious https://thomasmock.quarto.pub/quarto-curious/

NYC Data Hackers

Democratizing Data Science Teams With Quarto (boB Rudis)

https://hrbrmstr.github.io/2022-10-nycdh/2022-10-nydh.html
Having fun with iFrames (Quarto) (Emil Hvitfeldt) https://emilhvitfeldt.github.io/quarto-iframe-examples/
Quarto: create beautiful documents with R, Python, Julia and Observable (Runapp 2022 talk)

https://runapp2022.talks.jamesgoldie.dev/

https://github.com/jimjam-slam/talk-runapp-quarto-2022

Meetups

Название адрес
R meetups (Russian) https://meetups.rintro.ru/
New York Open Statistical Programming Meetup https://nyhackr.org/past-talks
R-Ladies Freiburg

https://github.com/rladies/meetup-presentations_freiburg

https://www.youtube.com/playlist?list=PLPwprT5wdzX7NVDl4oYQ7c2_6ox0_1fyr

Running code while we’re sleeping: Introduction to GitHub Actions for R Users by Beatriz Milz

https://youtu.be/ZANp3oqcH_0

https://beatrizmilz.github.io/2022-gha-rladies-abuja/speaker.html